(1) Let W be a subspace of \mathbb{R}^{4} given by

$$
W=\left\{\left[\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right]: x-2 y+z+w=0\right\}
$$

Find a basis of W. What is the dimension of W ? Can you realize W as the null space of a linear transformation?
(2) Consider the map $T: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ given by $T(X)=A X$, where

$$
A=\left[\begin{array}{rrr}
0 & e & \pi \\
\sqrt{2} & 0 & 1 \\
0 & -e & \pi
\end{array}\right]
$$

(a) Is the map surjective? What does this say about solutions to $A X=B$ for arbitrary $B \in \mathbb{R}^{3}$?
(b) Is the map injective? What does this say about the uniqueness of the solutions to $A X=B$?
(3) Find a basis for the column space of

$$
A=\left[\begin{array}{rrrrr}
1 & 2 & -1 & -2 & 0 \\
2 & 4 & -1 & 1 & 0 \\
3 & 6 & -1 & 4 & 1 \\
0 & 0 & 1 & 5 & 0
\end{array}\right]
$$

(4) Define $T: P_{4}(\mathbb{R}) \rightarrow P_{4}(\mathbb{R})$ by

$$
T(p)(x)=x p^{\prime}(x)
$$

for all x. Find all eigenvalues and eigenvectors of T.
(5) Find the eigenvalues for the matrix

$$
A=\left[\begin{array}{rrr}
2 & 0 & 0 \\
3 & -4 & -3 \\
-3 & 6 & 5
\end{array}\right]
$$

Find the eigenspace of each eigenvalue.
(6) Let A and B be $n \times n$ matrices. Show that the $\operatorname{rank}(A B) \leq \operatorname{rank}(A)$
(7) Fins a 2×2 matrix A that has an eigenvalue $\lambda_{1}=1$ with eigenvector $v_{1}=(12)^{t}$ and an eigenvalue $\lambda_{2}=-1$ with eigenvector $v_{2}=(21)^{t}$.

