June, 2021: Vector spaces, basis, dimension.

Notation: F denotes the set of real numbers \mathbb{R}, or the set of complex numbers \mathbb{C}.
(1) Determine whether the set of vectors

$$
S=\left\{v_{1}=\left[\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right], v_{2}=\left[\begin{array}{r}
-1 \\
2 \\
2
\end{array}\right], v_{3}=\left[\begin{array}{r}
-1 \\
3 \\
5
\end{array}\right]\right\}
$$

in \mathbb{R}^{3} is a linearly independent set.
(2) Show that the column vectors of a square matrix A are linearly independent if and only if the linear system $A X=0$ has the only zero solution.
(3) For which real numbers x do the vectors $(x, 1,1,1)^{t},(1, x, 1,1)^{t},(1,1, x, 1)^{t},(1,1,1, x)^{t}$ NOT form a basis of \mathbb{R}^{4} ? For each of the values of x that you find, what is the dimension of the subspace of \mathbb{R}^{4} that they span?
(4) Show that the subset W of all symmetric $n \times n$ matrices forms a subspace of $M_{n}(F)$, the vector space of all $n \times n$ matrices. Find a basis for the subspace W of $M_{n}(F)$.
(5) (i) Find the dimension of the subspace which is the intersection of the following two planes in \mathbb{R}^{3}

$$
x+2 y-z=0, \quad 3 x-3 y+z=0
$$

(ii) Can you write the above subspace as the nullspace (or kernel) of a linear transformation?
(6) Find a basis for the row space of

$$
A=\left[\begin{array}{ccccc}
1 & -1 & 1 & 3 & 2 \\
2 & -1 & 1 & 5 & 1 \\
3 & -1 & 1 & 7 & 0 \\
0 & 1 & -1 & -1 & -3
\end{array}\right]
$$

(7) Find a basis for the column space of

$$
A=\left[\begin{array}{ccccc}
1 & 2 & -1 & -2 & 0 \\
2 & 4 & -1 & 1 & 0 \\
3 & 6 & -1 & 4 & 1 \\
0 & 0 & 1 & 5 & 0
\end{array}\right]
$$

(8) Find a linear transformation from \mathbb{R}^{2} to \mathbb{R}^{2} which maps the region \mathbf{L} in blue to the region \mathbf{L} in pink.

(9) Let T be a linear transformation from \mathbb{R}^{3} to \mathbb{R}^{3} defined by

$$
T(x, y, z)^{t}=(x+2 y-z, 2 x+3 y+z, 4 x+7 y-z)^{t}
$$

Describe the null space of T and the range of T. Geometrically what does these two subspaces of \mathbb{R}^{3} represent?
(10) Let $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear map T_{A} given by multiplication by the matrix

$$
A=\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 2 & 1 \\
0 & 0 & 2
\end{array}\right]
$$

Find the matrix of T_{A} with respect to the basis $\mathcal{B}=\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)^{t},\left(\begin{array}{lll}1 & 1 & 0\end{array}\right)^{t},\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)^{t}$. Find range of the linear transformation.

