(1) Show that elementary matrices are invertible. What are the inverses of each type?
(2) Find solution of the following system of equations in three variables using row-reduction.

$$
\begin{aligned}
2 x+4 y+6 z & =22 \\
3 x+8 y+5 z & =27 \\
-x+y+2 z & =2
\end{aligned}
$$

(3) Find solution of the following system of equations in three variables using row-reduction.

$$
\begin{aligned}
x+2 y-3 z & =-2 \\
3 x-y-2 z & =1 \\
2 x+3 y-5 z & =-3
\end{aligned}
$$

(4) Find solution of the following system of equations in three variables using row-reduction.

$$
\begin{aligned}
x+y+z & =1 \\
3 x-y-z & =4 \\
x+5 y+5 z & =-1
\end{aligned}
$$

(5) Give an example of a system of 4 linear equations in 4 unknowns with infinitely many solutions.
(6) Suppose you have k linear equations in n variables, and by writing in matrix form we have $A X=b$. Give a proof or counterexample for each of the following:
(a) If $n=k$ there is always at most one solution.
(b) If $n>k$ we can always solve $A X=b$.
(c) If $n<k$ then for some b there is no solution of $A X=b$.
(d) If $n<k$ the only solution of $A X=0$ is $X=0$.
(7) Consider an arbitrary system of linear equations $A X=B$, where A and B are real matrices. (a) Prove that if the system of equations $A X=B$ has more than one solution then it has infinitely many.
(b) Prove that if there is a solution in the complex numbers then there is also a real solution.

