1. Using R, estimate the following integrals using an enclosing box.
(a) $\int \mathbb{I}\left(5 x^{2}+y^{2}<1\right) d x d y$
(b) $\int \mathbb{I}\left(4 x^{2}+3 y^{2}+2 x y<1\right) d x d y$
(c) $\int_{0}^{1} e^{-x^{2} / 20} d x$
(d) $\int_{0}^{10} x^{15} e^{-5 x} d x$

After-class and a little hard

Volume of higher-dimensional spheres

We know the area of a circle, and we know the volume of the sphere, but of course, we don't know the volume of a general k-dimensional sphere. Consider the k-sphere

$$
x_{1}^{2}+x_{2}^{2}+\cdots+x_{k}^{2}<1
$$

Then the volume of the k-sphere is

$$
\int \mathbb{I}\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{k}^{2}<1\right) d x_{1} \ldots d x_{k}
$$

We can estimate the volume of the box using the same idea as before. Enclose the k-sphere in a k-box, obtain \hat{p} : the proportion of points in the region and estimate the volume of the sphere.

$$
\text { Volume of } k \text {-sphere }=\hat{p} \cdot \text { Volume of the } k \text {-box }
$$

Implement this in R for $k=2,3,10,15$.

