\qquad

1. For the experiment of drawing numbers uniformly between $(45,95)$.
(a) What is the probability that you obtain the number 50 ?
(b) What is the probability you obtain a number between $(50,70)$?
(c) What is the probability you obtain a number between $(50,52)$?
2. Using R, "verify" your answer to each of the three questions. Choose whatever n you need to choose and increase the n if you feel it's necessary.
3. Using R and crude Riemann integration, obtain an approximation of the integral:

$$
\int_{0}^{1} \sin (50 x) \log \left(x^{2}+10\right) d x
$$

After-class and a little hard

1. Can you think of exactly how the computer is truly giving completely uniform draws between $(0,1)$? Consider the following:
(a) Choose a constant x_{0} (any number you want), and large positive numbers a and m
(b) In a loop, calculate $x_{n}=a x_{n 1} \bmod m$ for $n=1000$.
(c) Store the sequence x_{i} / m for all $i=1, \ldots, m$.

Can you explain what is happening here? Below is the code that implements this and shows some plots. Change a a m and try and explain what is happening in the above steps.

```
m <- 2^(31) - 1
a <- 7^5
x <- numeric(length = 1e3)
x[1] <- 7 # indexing starts from 1
for(i in 2:(1e3+1))
{
    x[i] <- (a * x[i-1]) %% m
}
# For side-by-side plot
par(mfrow = c(1,2))
hist(x/m) # looks close to uniformly distributed
```

