\qquad

Download codes for this lecture at:
Lecture 5 codes: https://www.dropbox.com/s/zay3xqqbfhggmj6/Lec5.R?dl=0

Recap

Recall that if $X \sim \operatorname{Uniform}(a, b)$, then

$$
\operatorname{Pr}\left(a_{1}<X<b_{1}\right)=\frac{b_{1}-a_{1}}{b-a}=: p .
$$

Recall that we obtained a method to estimate p by \hat{p}, by uniformly obtaining points on the line (a, b), and calculating the proportion of points in $\left(a_{1}, b_{1}\right)$. Additionally, an estimate of the length of the interval $\left(a_{1}, b_{1}\right)$ is

$$
(b-a) \hat{p} .
$$

What if we wanted to estimated the area of a region instead of a length of a segment?

Area of a Circle

Consider a unit circle centered at $(0,0)$:

$$
x^{2}+y^{2}<1 .
$$

We are interested in estimating the area of a circle. That is, we are interested in estimating

$$
\theta=\iint \mathbb{I}\left(x^{2}+y^{2}<1\right) d x d y .
$$

Suppose $Z=(X, Y)$ is uniformly distributed on a square. That is, all points within the square are equally likely to be picked. We know how to sample uniformly from a square.

Let $X \sim \operatorname{Uniform}(a, b)$ and $Y \sim \operatorname{Uniform}(a, b)$. Then (X, Y) are uniformly distributed over the square $(a, b) \times(a, b)$. To convince yourself of this, run the code below a few times

```
a <- 0
b <- 1
n <- 1e4
x <- runif(n, min = 0, max = 1)
y <- runif(n, min = 0, max = 1)
plot(x, y)
```

If we can enclose our circle inside of a square box, obtain points uniformly in the box, and check how many lie inside the circle. Let $p=\operatorname{Pr}((X, Y)$ lie in the circle is $)$, than

$$
\hat{p}=\frac{\text { Number of points in the circle }}{\text { Number of points drawn }}
$$

And thus, as before, the area of the circle can be obtained by
Area of circle $=\hat{p}$. Area of the box.

```
n <- 1e4
xvec <- runif(n, min = -1, max = 1) #c(U1, U2)
yvec <- runif(n, min = -1, max = 1) #c(U1, U2)
in.or.out <- (xvec^2 + yvec^2 < 1)
mean(in.or.out)*4
# graph of points that are and out
plot(xvec, yvec, xlab = "x", ylab = "y", main = "In or Out", asp = 1, col =
    in.or.out+1)
```


Volume of higher-dimensional spheres

We know the area of a circle, and we know the volume of the sphere, but of course, we don't know the volume of a general k-dimensional sphere. Consider the k-sphere

$$
x_{1}^{2}+x_{2}^{2}+\cdots+x_{k}^{2}<1
$$

Then the volume of the k-sphere is

$$
\int \mathbb{I}\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{k}^{2}<1\right) d x_{1} \ldots d x_{k}
$$

We can repeat the same idea now. Enclose the k-sphere in a k-box, obtain \hat{p}, the proportion of points in the region and estimate the volume of the sphere.

Volume of k-sphere $=\hat{p}$. Volume of the k-box.

