\qquad

1. A sequence $\left\{a_{n}\right\}$ is a bounded sequence if there is a $M>0$ such that a_{n} is in the interval $(-M, M)$ for all $n \in \mathbb{N}$.
(a) Provide an example of a bounded sequence: which converges and which does not converge to a real number.
(b) Write a logical statement ${ }^{1}$ that is equivalent to saying that the sequence a_{n} is bounded.
(c) Write a logical statement that is equivalent to saying that the sequence a_{n} is not bounded.
2. Find an example of a sequence that satisfies the below statements and then write the below statements using logical notation:
(a) For every $\epsilon>0$ there are infinitely many n such that distance of a_{n} to 0 is less than ϵ.
(b) For every $\epsilon>0$ for all but finitely many n the distance of a_{n} to 0 is less than ϵ.
3. Let $a, b: \mathbb{N} \rightarrow \mathbb{R}_{+}$be two sequences

- $a_{n}=O\left(b_{n}\right)$ if there exists $N_{0} \in \mathbb{N}$ and $c>0$ such that $a_{n} \leq c b_{n}$ for all $n \geq N_{0}$
- $a_{n}=o\left(b_{n}\right)$ if for every $\epsilon>0$ there exists N_{0} such that $a_{n} \leq \epsilon b_{n}$ for all $n \geq N_{0}$

For each of the following indicate whether $a_{n}=O\left(b_{n}\right)$, or $a_{n}=o\left(b_{n}\right)$
(a) $a_{n}=n^{3}+5 n^{2}+15$ and $b_{n}=n^{3}+7 n+8$
(b) $a_{n}=n b^{n}$, for $b \in(0,1)$ and $b_{n}=\frac{1}{n^{4}}$

[^0]
[^0]: ${ }^{1}$ Logical Notation: $\bullet \quad \forall$ to mean for all; $\bullet \exists$ to mean there exists; $\bullet \quad \Longrightarrow$ to mean implies; and $\bullet \Longleftrightarrow$ to mean equivalent.

