- 1. A sequence $\{a_n\}$ is a bounded sequence if there is a M > 0 such that a_n is in the interval (-M, M) for all $n \in \mathbb{N}$.
 - (a) Provide an example of a bounded sequence: which converges and which does not converge to a real number.
 - (b) Write a logical statement¹ that is equivalent to saying that the sequence a_n is bounded.
 - (c) Write a logical statement that is equivalent to saying that the sequence a_n is not bounded.
- 2. Find an example of a sequence that satisfies the below statements and then write the below statements using logical notation:
 - (a) For every $\epsilon > 0$ there are infinitely many n such that distance of a_n to 0 is less than ϵ .
 - (b) For every $\epsilon > 0$ for all but finitely many n the distance of a_n to 0 is less than ϵ .
- 3. Let $a, b : \mathbb{N} \to \mathbb{R}_+$ be two sequences
 - $a_n = O(b_n)$ if there exists $N_0 \in \mathbb{N}$ and c > 0 such that $a_n \leq cb_n$ for all $n \geq N_0$
 - $a_n = o(b_n)$ if for every $\epsilon > 0$ there exists N_0 such that $a_n \leq \epsilon b_n$ for all $n \geq N_0$

For each of the following indicate whether $a_n = O(b_n)$, or $a_n = o(b_n)$

- (a) $a_n = n^3 + 5n^2 + 15$ and $b_n = n^3 + 7n + 8$
- (b) $a_n = nb^n$, for $b \in (0, 1)$ and $b_n = \frac{1}{n^4}$

¹Logical Notation: • \forall to mean for all; • \exists to mean there exists; • \Longrightarrow to mean implies; and • \iff to mean equivalent.