\qquad

1. Let $a, b: \mathbb{N} \rightarrow \mathbb{R}_{+}$be two sequences

- $a_{n}=O\left(b_{n}\right)$ if there exists $N_{0} \in \mathbb{N}$ and $c>0$ such that $a_{n} \leq c b_{n}$ for all $n \geq N_{0}$
- $a_{n}=o\left(b_{n}\right)$ if for every $\epsilon>0$ there exists N_{0} such that $a_{n} \leq \epsilon b_{n}$ for all $n \geq N_{0}$

2. Consider the following sets of sequences:
(a) $a_{n}=n^{3}+5 n^{2}+15$ and $b_{n}=n^{3}+7 n+8$
(b) $a_{n}=n^{3}+5 n^{2}+15$ and $b_{n}=n^{3}+700000 n+1000$
(c) $a_{n}=n^{3}+5 n^{2}+15$ and $b_{n}=0.0005 n^{4}+7 n^{2}+8$
(d) $a_{n}=n^{3}+5 n^{2}+15$ and $b_{n}=2^{n}$
i. The below R-code is available in Dropbox shared folder BIGO.R.
```
> #writing sequences as functions
> a <- function(n){ n^3+ 5*n^2+ 15}
> b1 <- function(n){n^3+ 7*n+ 8}
> b2 <- function(n){n^3+ 700000*n+ 1000}
> b3 <- function(n){0.0005*n^4+ 7*n^2+ 8}
> b4 <- function(n){2^n }
> # setting the number of steps
> n = seq(1, 100, by = 1)
> #calculating the ratio of sequences
> c1 <- a(n)/b1(n)
> c2 <- a(n)/b2(n)
> c3 <- a(n)/b3(n)
> c4 <- a(n)/b4(n)
> #setting chart in plot to four spaces
> par(mfrow= c(2,2))
#plotting the sequences in one chart
> plot(c1~n, cex= 0.2, col= "#d55e00", xlab= "n", ylab= "a/b1", main = "(a)")
plot(c2~n, cex= 0.2, col= "#cc79a7", xlab= "n", ylab= "a/b2", main = "(b)")
> plot(c3~n, cex= 0.2, col= "#0072b2", xlab= "n", ylab= "a/b3", main = "(c)")
plot(c4~n, cex= 0.2, col= "#009e73", xlab= "n", ylab= "a/b4", main = "(d)")
```

In R-studio cloud or elsewhere please run the above code to obtain the plots.
ii. From the plots can you guess for each of (a), (b), (c), (d), if $a_{n}=O\left(b_{n}\right)$ or $a_{n}=o\left(b_{n}\right)$.
iii. Change the R and plot till $n=5000$ for the sequences mentioned in (a), (b), (c), and (d).
iv. Decide (with proof) whether $a_{n}=O\left(b_{n}\right)$ or $a_{n}=o\left(b_{n}\right)$ for sequences in (a), (b), (c), (d).
3. For each of the following indicate whether $a_{n}=O\left(b_{n}\right)$, or $a_{n}=o\left(b_{n}\right)$
(a) $a_{n}=n^{3}+5 n^{2}+15$ and $b_{n}=n^{3}+7 n+8$
(b) $a_{n}=n b^{n}$, for $b \in(0,1)$ and $b_{n}=\frac{1}{n^{4}}$

