1. As described in figure, define $C(x)$ to be the area bounded by the x-axis and the function $h(x)=6-x$

between y-axis and the the vertical line at x, with $x>0$.
(a) Find $C(2), C(3)-C(1)$ and $C(4)$.
(b) Find a formula for $C(x)$ for general $x>0$ and $C^{\prime}(x)$.
2. Define $E(a)$ to be the area bounded by the x-axis and the function $f(x)=e^{x}$ between the vertical line at $x=0$, and the vertical line at $x=a$, with $a>0$.
(a) Using a rough sketch, slice the area bounded by the x-axis and the function $f(x)=e^{x}$ between the vertical line at $x=0$, and the vertical line at $x=1$ into 4 pieces by drawing 3 evenly spaced vertical lines from the x-axis up to the curve.
(b) Using the left side of each slice as the height, draw 4 rectangles on your graph. Find the areas of the 4 rectangles and add them up $\left(\equiv U_{1}\right)$.
(c) Using the right side of each slice as the height, draw 4 rectangles on your graph. Find the areas of the 4 rectangles and add them up ($\equiv L_{1}$).
(d) Find the average of U_{1} and L_{1}
(e) Compare all the above answers with $e-1$ in your calculator.
