
1. As described in figure, define B(x) to be the area bounded by the x-axis and the function g(x) = 1+x

between y-axis and the the vertical line at x, with x > 0.

- (a) Find B(1), B(3) B(2) and B(4).
- (b) Find a formula for B(x) for x > 0 and B'(x).
- 2. Define L(a) to be the area bounded by the x-axis and the function $f(x) = \frac{1}{x}$ between the vertical line at x = 1, and the vertical line at x = a, with a > 1.
 - (a) Using a rough sketch, slice the area bounded by the x-axis and the function $f(x) = \frac{1}{x}$ between the vertical line at x = 1, and the vertical line at x = 2 into 4 pieces by drawing 3 evenly spaced vertical lines from the x-axis up to the curve.
 - (b) Using the left side of each slice as the height, draw 4 rectangles on your graph. Find the areas of the 4 rectangles and add them up ($\equiv U_1$).
 - (c) Using the right side of each slice as the height, draw 4 rectangles on your graph. Find the areas of the 4 rectangles and add them up ($\equiv L_1$).
 - (d) Find the average of U_1 and L_1
 - (e) Compare all the above answers with $\ln(2)$ in your calculator.