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1. A sequence {a,} is a bounded sequence if there is a M > 0 such that a,, is in the interval (—M, M)
for all n € N. o

(a) Provide an example of a bounded sequence: which converges and which does not converge to
a real number.

M J‘)D [,[. ,_,_> (b) Write a logical statement® that is equivalent to saying that the sequence a, is bounded.
5 Y3 /)Y A ——) (c) Write a logical statement that is equivalent to saying that the sequence a,, is not bounded.

2. Find an example of a sequence that satisfies the below statements and then write the below state-
ments using logical notation:

NS H A‘ Q0 —(a) For every € > 0 there are infinitely many n such that distance of a,, to 0 is less than e.
\') A_P,— Q P M=/ (b) For every € > 0 for all but finitely many n the distance of a,, to 0 is less than e. )

3. Let a,b: N = R, be two sequences

e a, = O(by,) if there exists Ny € N and ¢ > 0 such that a,, < cb,, for all n > Ny
e a, = o(by,) if for every € > 0 there exists Ny such that a,, < €b, for all n > Ny

For each of the following indicate whether a,, = O(by,), or a, = o(b,)

(a) a, =n>+5n%+15 and b, = n> + Tn + 8
(b) an =mnb", for b € (0,1) and b, = 4

1Logical Notation: e V to mean for all; ¢ 3 to mean there exists; ¢ == to mean implies; and ¢ <= to mean
equivalent.
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1. A sequence {a,} is a bounded sequence if there is a M > 0 such that a,, is in the interval (—M, M)
for all n € N.

(a) Provide an example of a bounded sequence.
z\ /y \J_C —— (b) Write a logical statement' that is equivalent to saying that the sequence a,, is bounded.
P />r 1D5 o — (c) Write a logical statement that is equivalent to saying that the sequence a,, is not bounded.

2. Find an example of a sequence that satisfies the below statements and then write the below state-
ments using logical notation:

(LJ A P —, (a) For every e > 0 there are infinitely many n such that distance of a,, to 3 is less than e.
M PU M — (b) For every € > 0 for all but finitely many n the distance of a,, to 3 is less than e.

3. Let a,b: N — R, be two sequences

e a, = O(by,) if there exists Ny € N and ¢ > 0 such that a,, < ¢b,, for all n > Ny
e a, = o(by,) if for every € > 0 there exists Ny such that a,, < b, for all n > Ny

For each of the following indicate whether a,, = O(b,,), or a, = o(by,)

(a) a, =n>+2n?+10 and b, = n3 + 6n + 1
(b) an =mnb", for b € (0,1) and b, = 5

goon&c/d\ Seq e n e &Q“D @;C\—W

1Logical Notation: e V to mean for all; ¢ 3 to mean there exists; ¢ == to mean implies; and ¢ <= to mean
equivalent.
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