

June $16^{\text {th }}, 2021$

- Riemann Sum.
- Composite Simpsons
- Logic - negation

$$
\begin{aligned}
& f:[a, b] \rightarrow \mathbb{R} \\
& x_{i}=\frac{b-a}{n} i+a
\end{aligned}
$$

Riemann Sums

$$
L_{n}=\sum_{k=1}^{n} f\left(x_{k-1}\right) \cdot\left(\frac{b-a}{n}\right)
$$

$f(x)$

$$
R_{n}=\sum_{k=1}^{n} f\left(x_{k}\right) \cdot\left(\frac{b-a}{n}\right)
$$

$$
I=\int_{a}^{b} f(x) d x
$$

Question :-

$$
\begin{aligned}
& \left|I-R_{n}\right|:=\alpha_{n} \\
& \left|I-L_{n}\right|:=\beta_{n} \\
& \left|I-\left(\frac{L_{n}+R_{n}}{2}\right)\right|:=\gamma_{n}
\end{aligned}
$$

$Q D_{0} \quad \alpha_{1}, \beta_{n}, \gamma_{1} \rightarrow 0$ os $n \rightarrow \infty$?
Q: How fort do they do so to $2 e 00$?
\qquad

1. Suppose we are given the below data about $f:[0,1] \rightarrow \mathbb{R}$.

$f(0)$	$f\left(\frac{1}{2}\right)$	$f(1)$
0	$\frac{1}{\sqrt{2}}$	1

(a) Use the part (c) to provide an approximation of $\int_{0}^{1} f(x) d x$.
(b) Suppose $f(x)=\sqrt{x}$ then quantify the error in each approximation.
(c) Are their functions for which the approximations) will be exact ?
2. The graph of a function $f(t)$ is shown. Use it to answer the following questions.

$$
\begin{aligned}
& \frac{1}{8} \int_{0}^{8} f(x) d x-I \\
& \frac{1}{8} \int_{4}^{12} f(x) d x-\frac{\pi}{4}
\end{aligned}
$$

(a) Using 1(c) provide an approximation of the average value of this function over the interval [0, 8]. $[4,12]$
(b) Can you provide a better approximation of the same using 1(c)?

$$
\begin{aligned}
& \int_{0}^{12} f(x) d x=I+\mathbb{I}+\text { III } \\
&=\frac{4}{6}[f(0)+4 f(2)+2 f(4)+4 f(1)+2 f(r)+4 f(10)+f 1 \\
& \text { Ex: Is this better? }
\end{aligned}
$$

$$
\begin{aligned}
& I=\int_{0}^{4} f(t) d t \cong \underline{\equiv}[0,4] \equiv \frac{4}{6}[f(0)+4 f(2)+f(4)] \\
& \text { II }=\int_{4}^{8} f(t) d t-\tilde{\equiv}[4,8] \equiv \frac{4}{6}[f(4)+4 f(6)+f(8)] \\
& \text { II }=\int_{8}^{12} f(t) d t=[8,12] \equiv \frac{4}{6}[f(8)+4 f(101+f(12)]
\end{aligned}
$$

$f:[a, b] \rightarrow \mathbb{R}$
SimpSon's Rule

$$
x_{i}=\frac{b-a}{n} i+a
$$

- Divide into n-even

$$
\begin{aligned}
& \text { parts } \\
& I-\int_{a}^{b} f(x) d x=\sum_{j=1}^{n / 2} \int_{x_{2 j-2}}^{x_{2 j}} f(x) d x \\
& \text { 11 }\} \substack{\text { simpson's } \\
\text { rule }} \\
& =\sum_{j=1}^{n / 2} \frac{2(b-a)}{6 n}\left[f\left(x_{2 j y}\right)+4 f\left(x_{2 j-j}\right)+f\left(x_{i j}\right)\right]
\end{aligned}
$$

Algebra
(Ex)

$$
\frac{b-a}{3 n}\left[f(a)+2 \sum_{j=1}^{n / 2} f\left(x_{2 j-2}\right)+4 \sum_{j=1}^{n / 2} f\left(x_{2 j-1}\right)+f(b)\right]
$$

$(\operatorname{Simpson})_{n}$

Question :- n-even $[a, b]$ into n-part

$$
\begin{gathered}
I=s_{a}^{b} f(x) d x \\
\alpha_{n}:=I-(\text { Simpson })_{n} \\
x_{i}=\frac{b-a}{n} i+b \quad \\
\quad \text { Does } \alpha_{1} \rightarrow 0 \text { os } n \rightarrow \infty \text { ? }
\end{gathered}
$$

TODAY - OBJECTIVE
Given a sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ What does

$$
\text { - } a_{n} \longrightarrow 0 \text { as } n \rightarrow \infty
$$

- a_{n} converges to 0 as

$$
\text { - } \lim _{n \rightarrow \infty} a_{n}=0 \quad \text { ? }
$$

Negation of statement A: a statement B whose assertion specifically denies the truth of statement A.

1. Negate the below statements and express the negations in English avoiding the use of negation
words whenever possible.
(a) There is a vaccine in the world that is not safe for cockroaches. - $\left\{\begin{array}{l}\text { all vaccins ace } \\ \text { safe far cockroaches }\end{array}\right.$
(b) All pairs of students y ho participated in Linear Algebra Mel stood atleast 6 feet apart.
(c) In Breakout room 1 online classes in SWMS all students were speaking.
(d) During the month of May, Siva Sanitized his hands every hour. is one (e) There is one person in Immunity's birthday party who is not wearing a mask.
(f) Every student in this class has taken Bhojpuri or Maithili in Class XII.
(g) Every student in this class has taken Mathematics and Biology in trass XII.
2. Let us introduce Logical Notation:

- \forall to mean for all;
- \exists to mean there exists;
- \Longrightarrow to mean implies; and
- \Longleftrightarrow to mean equivalent.

Here is an example of usage of notation:
Statement : For all $\epsilon>0$ there is an N such that for all $n \geq N, a_{n} \in(a-\epsilon, a+\epsilon)$.
Statement in logical Notation: $\forall \epsilon>0, \exists N$ such that $\forall n \geq N, a_{n} \in(a-\epsilon, a+\epsilon)$.
(a) We say $\lim _{n \rightarrow \infty} a_{n}=5$ if

For every $\epsilon>0$ there exists $N>0$ such that $\left|a_{n}-5\right|<\epsilon$ whenever $n \geq N$.
レ. Provide three examples of sequences that converge to $5 . \quad a_{n}=5 \quad \forall a \geq r$,
ii. Provide three examples of sequences that do not converge to 5 .
iii. Provide an example of sequence that does not converges to any real number.
D^{2} iv. Write a logical statement that is equivalent to saying $\lim _{n \rightarrow \infty} a_{n} \neq 5$
v. Write a logical statement that is equivalent to saying that the sequence a_{n} does not converge to any real number.

These is one pare
(i)

$$
\begin{array}{rl}
0 \quad a_{n}=5 \quad \forall n \geqslant 1 \\
\quad\left(a_{n}\right]=4.9, & 4.99,4.999 \\
n \geqslant 1 & 5-\frac{1}{10}, 5-\frac{1}{100}, 5-\frac{1}{1000} \\
a_{n} & =5-\left(\frac{1}{10}\right)^{n}
\end{array}
$$

(ii) $\quad a_{n}=n \quad(v$

$$
a_{n}=7
$$

(iii) $\quad a_{n}=n$

$$
\} E_{x} ?
$$

$\forall \varepsilon>0 \quad \exists N \geqslant 1$

$$
a_{n} \rightarrow a^{\{3,5\}} \text { os } n \rightarrow \infty
$$

an does not Converge to a $N \quad n>N$

\qquad

Negation of statement A: a statement B whose assertion specifically denies the truth of statement A.

1. Negate the below statements and express the negations in English avoiding the use of negation words whenever possible.
(a) There is a vaccine on the world that is not safe for lizard. $\leftarrow\left\{\begin{array}{l}\text { Every } v \text { accine is the } \\ \text { world is safe forlizaml }\end{array}\right.$
(b) All pairs of students who participated in Geometry Mela stood atleast 6 feet apart.

(a) We say $\lim _{n \rightarrow \infty} a_{n}=3$ if

For every $\epsilon>0$ there exists $N>0$ such that $\left|a_{n}-3\right|<\epsilon$ whenever $n \geq N$.
i. Provide three examples of sequences that converge to 3 .
ii. Provide three examples of sequences that do not converge to 3 .
iii. Provide an example of sequence that does not converges to any real number.
iv. Write a logical statement that is equivalent to saying $\lim _{n \rightarrow \infty} a_{n} \neq 3$
v. Write a logical statement that is equivalent to saying that the sequence a_{n} does not converge to any real number.

