June $15^{\text {th }} 2021$
Integral Approximation: Trapezoid

and Simpson Rale

$$
\begin{aligned}
f(x)=f(a)+(x-a) f^{\prime}(a) & +\frac{(x-a)^{2} f^{\prime \prime}(a)}{2} \\
& +\frac{(x-a)^{3}}{6} f^{\prime \prime \prime}(\xi)
\end{aligned}
$$

worksheet 2:

$$
\begin{aligned}
& P_{2}(x)=\frac{(x-a)(x-b)}{\left(\frac{a+b}{2}-a\right)\left(\frac{a+b}{2}-b\right)} \frac{((a+b))}{2}+\frac{(x-a+b)(x-b)}{\left(a-\frac{a+b}{2}\right)(a-b)} f(a) \\
& +\frac{\left(x-\frac{a+b}{2}\right)(x-a)}{\left(b-\frac{(a+b)}{2}\right)(b-a)} f(b) \\
& \int_{a}^{b} p_{2}(x) d x=\frac{f\left(\frac{(a+b)}{2}\right)}{\left(\frac{a+b}{2}-a\right)\left(\frac{a+b}{2}-b\right)} \int_{a}^{b}(x-a)(x-b) d x \\
& +\frac{f(a)}{\left(a-\frac{a+b}{2}\right)(a-b)} \int_{a}^{b}\left(x-\frac{a+b}{2}\right)(x-b) d x \\
& +\frac{f(b)}{\left(b-\frac{(a+b)}{2}\right)(b-a)} \int_{a}^{b}\left(x-\frac{a+b}{2}\right)(x-a) d x
\end{aligned}
$$

use: $\quad \int_{a}^{b} x^{2} d x=\frac{b^{3}}{3}-\frac{a^{5}}{3} ; \int_{a}^{b} x d x=\frac{b^{2}}{2}-\frac{a^{2}}{2}$

$$
\underset{\text { ANs }}{=}
$$

Simpson's Rule (Quadratic)

$$
\int_{a}^{b} f(x) d x \approx \int_{a}^{b} p_{2}(x) d x
$$

$P_{2}(\cdot)$ is a quadratic passing through $(a, f(a)),(b, f(b))$

$$
\begin{aligned}
& \text { and }\left(\frac{a+b}{2}, f\left(\frac{(a+b}{2}\right)\right) \\
& =\frac{b-a}{6}\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right] \\
& \begin{array}{r}
\int_{0}^{1} x^{3} d x=\left.\frac{x^{4}}{4}\right|_{0} ^{1}=\frac{1}{4}-0=\frac{1}{4} \\
{\left[\begin{array}{r}
\text { Simpson ls }] \approx \frac{1-0}{6}\left[0^{3}+4\left(\frac{1}{2}\right)^{3}+1^{3}\right] \\
\text { Rule }
\end{array}\right.} \\
=\frac{1}{6}\left[\frac{1}{2}+1\right]=\frac{1}{4}
\end{array}
\end{aligned}
$$

It is also true $\forall a, b \in R$ a $<b$

$$
\int_{a}^{b} x^{3} d x \underset{\text { Rule }}{\underset{\sim}{\text { Simpson }}} \frac{b^{4}}{4}-\frac{a^{4}}{4}
$$

Observation: Simpson's rule is exact for all $f:[a, b] \rightarrow \mathbb{R}$ where f is a cubic polynomial.

Questions:-

- Riemann Sums
- Trapezoid Rate
- Simpsons Raul

Can we Quantify the error?
\qquad

1. Suppose we are given $f:[a, b] \rightarrow \mathbb{R}$ and the values of $(a, f(a)),\left(\frac{a+b}{2}, f\left(\frac{a+b}{2}\right)\right),(b, f(b))$.

Question: How to cornute values that are known area under the curs?
If f is a straight line then $f \equiv P_{1}$
(a) Find the line $p_{1}:[a, b] \rightarrow \mathbb{R}$ passing through $(a, f(a))$ and $(b, f(b))$

$$
\phi_{1}(x)=\frac{x-a}{b-a} f(b)+\frac{x-b}{d x-b} f(a)
$$

(b) Find the quadratic $p_{2}:[a, b] \rightarrow \mathbb{R}$ passing through $(a, f(a)),\left(\frac{a+b}{2}, f\left(\frac{a+b}{2}\right)\right),(b, f(b))$

$$
D_{2}(x)=\frac{(x-a)(x-b)}{\left(\frac{x+t}{2}-a\right)\left(\frac{a b}{2}-b\right)} f\left(\frac{a+b}{2}\right)+\frac{(x-a+b)(x-a)}{(b-a+t)(b-a)} f(b)+\frac{\left(x-\frac{a+b}{2}\right)(x-b)}{\left(a-\frac{a+b}{2}\right)(b-b)} f(a)
$$

(c) Fill in the following table: approximation?

Soppose f is a quadcatic \& we have

$$
\left.-(a, f(a)),(b, f(b)), \frac{(a+b}{2}, f\left(\frac{a+b}{2}\right)\right)
$$

- Haere is a unigue quallatir passing theough ther.

$$
\begin{aligned}
& \Rightarrow \int_{2} \equiv f \\
& \Rightarrow \int_{a}^{b} P_{2}(x) d x=\int_{a}^{b} f(x) d x .
\end{aligned}
$$

Trapezoid Rale (Linear)

$$
\begin{aligned}
& f:[a, b) \rightarrow \mathbb{R} \\
& \int_{a}^{b} f(x) d x \underset{=}{=} \quad
\end{aligned}
$$

4
Exact if f is a linear function

Simpsons Rule (Quadratic)

$$
f:[a, b] \rightarrow \mathbb{R}
$$

$$
\int_{a}^{b} f(x) d x \cong \int_{a}^{b} p_{2}(x) d x
$$

where $p_{2}(\cdot)$ sos quadratic and it passed through

$$
\begin{aligned}
& -(a, f(a)),(b, f(b)),\left(\frac{a+b}{2}, f\left(\frac{a+b}{2}\right)\right. \\
& \quad=\frac{b-a}{6}\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right]
\end{aligned}
$$

Exact if f is a unto 3 -degree pblynomal Quadratic function
observation:-

$$
\int_{a}^{b} x^{3} d x=\left.\frac{x^{4}}{4}\right|_{a} ^{b}=\frac{b^{4}-a^{4}}{4}
$$

$$
f(x)=x^{3} \quad f:[9, b] \rightarrow \mathbb{R}
$$

- Simpson's ruk

$$
\begin{gathered}
\frac{(b-a)}{6}\left[a^{3}+4\left(\frac{a+b}{2}\right)^{3}+b^{3}\right] \\
=\ldots \\
=\frac{b^{4}}{4}-\frac{a^{4}}{4} \\
\int_{a}^{b} x^{3} d x=\begin{array}{c}
\text { Simpson's sule } \\
\text { appooximation. }
\end{array}
\end{gathered}
$$

1. Suppose we are given the below data about $f:[0, / f \rightarrow \mathbb{R}$.

Täble value Matches

$$
f(x)=\operatorname{Sin}(x) \longrightarrow \begin{array}{|c|c|c|}
f(0) & f\left(\frac{\overline{4}}{}\right) & f\left(\frac{\overline{2}}{2}\right) \\
\hline 0 & \frac{1}{\sqrt{2}} & 1 \\
\hline
\end{array}
$$

(a) Use the part (c) to provide an approximation of $\int_{0}^{\frac{\pi}{4}} f(x) d x$.
(b) Suppose $f(x)=\sin (x)$ then quantify the error in each approximation. $<\quad$ (c) Are their functions for which the approximations) will be exact?

\longrightarrow| $f(0)$ | $f\left(\frac{\pi}{4}\right)$ | $f\left(\frac{\pi}{2}\right)$ |
| :---: | :---: | :---: |
| 0 | $\frac{1}{\sqrt{2}}$ | 1 |

2. The graph of a function $f(t)$ is shown. Use it to answer the following questions.

$$
\begin{aligned}
\frac{1}{12-4} & \int_{4}^{12} f(x) d x \\
=1 / 8 & \int_{4}^{2} f(x) d x
\end{aligned}
$$

(a) Using 1(c) provide an approximation of the average value of this function over the interval $[4,12]$.
(b) Can you provide a better approximation of the same using 1(c)?
(a) $T_{\text {Rule }}:=\frac{\frac{\pi}{2}-0}{2}[0+1]=\frac{\pi}{4} \simeq 0.785$.

$$
S_{\text {Rule }}:=\frac{\frac{\pi}{2}-0}{6}\left[0+4 \frac{1}{\sqrt{2}}+1\right] \cong 1.0011
$$

$$
\text { (b) } I=\int_{0}^{\pi / 2} \sin (x) d x=-\left.\cos (x)\right|_{0} ^{\pi / 2}=1
$$

$$
\left.\begin{array}{l}
I-S_{\text {Rule }}=-0.0011 \\
I-T_{\text {Rule }}=0.215
\end{array}\right\} \text { give different }
$$

(c) $T_{\text {Rule }} \equiv$ Exact for linear fundions
$S_{\text {Rule }} \equiv$ Exact osto cable function

2 (a) Average value of

$$
\begin{aligned}
& f \quad \text { in }[4,12] \\
&= \frac{1}{8} \int_{4}^{12} f(x) d x \\
&= \frac{1}{8} \cdot \frac{[12-4]}{6}[f(4)+4 f(8)+f(12)] \\
& \text { Simesois } \begin{array}{l}
\text { mes }
\end{array} \\
&= \frac{1}{8} \cdot \frac{8}{6}[-2+4(3.5)+0] \\
& \cong 2
\end{aligned}
$$

$2(b)$ - Think about how to improve (a)
\qquad

1. Suppose we are given the below data about $f:[0,1] \rightarrow \mathbb{R}$.

Table values

$$
\text { Watches } f(x)=\sqrt{x}
$$

$f(0)$	$f\left(\frac{1}{2}\right)$	$f(1)$
0	$\frac{1}{\sqrt{2}}$	1

(a) Use the part (c) to provide an approximation of $\int_{0}^{1} f(x) d x$.
(b) Suppose $f(x)=\sqrt{x}$ then quantify the error in each approximation.
\leftarrow (c) Are their functions for which the approximations) will be exact ?
2. The graph of a function $f(t)$ is shown. Use it to answer the following questions.

Average

$$
\frac{\text { value }}{\frac{1}{8} \int_{0}^{8} f(x) d x}
$$

(a) Using 1(c) provide an approximation of the average value of this function over the interval $[0,8]$.
(b) Can you provide a better approximation of the same using 1 (c)?

$$
\text { (a) } T_{\text {Rub }}=\frac{(1-2)}{2}[0+1]=\frac{1}{2}
$$

$$
\text { Rule }=\frac{(1-0)}{6}\left[0+\frac{4}{\sqrt{2}}+1\right]=0.638
$$

$$
\text { (b) } I \equiv \int_{\theta}^{1} \sqrt{x} d x=\frac{\grave{3}}{} x^{3 / 2} \int_{0}^{1}=\frac{2}{3}=0.667
$$

$$
\text { Erie }\left\{\begin{array}{l}
I-T_{\text {Rule }}=\frac{2}{3}-\frac{1}{2}=\frac{1}{6}=0.166 \\
I-S_{\text {Rule }}=\frac{2}{3}-0.638=0.0287
\end{array}\right.
$$

(c) Truk e exact for linear functions

Shy exact for f upto a cubic function.

2 (a) Spruce approximation

$$
\begin{aligned}
& =\frac{1}{8} \cdot\left[\frac{8-0}{6}[f(0)+4 f(4)+f(8)]\right] \\
& =\frac{1}{6}[0+4(-2)+3.5] \\
& =-\frac{4.5}{6}=-0.75
\end{aligned}
$$

$2(b)$ - Think about how to improve (a)

